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FINAL REPORT ON AFOSR GRANT 77-3358

6/1/78 to 5/31/79

Charles L. Dolph

puring the past year definitive answers were achieved for several

questions raised in the prupusal cf February 1978. These include:

1. An examination of the relationship between the scattering matrix
(the Fourier transform of the scattering operator) and the integral equations
used in the Singularity Expansion Method (SEM) established that only the com-
plex poles off the axis ave intrinsically associated with the scatterer., While
it has been known in special cases that those on the axis do not contribute to
the field (e.g. Dolph, "Th¢ integral equation method in scattering theory",

Problems in Analvsis, Ed. R. C. Gunning, Princeton University Press, 1970.

An AFOSR Symposium):‘this appears to be the first time this relationship has
been clearly exhibited. Since the scattering matrix can be shown to be analytic
in a half-plane containing the axis, any integral equation should exhibit the
same properties for this region. Thoée of SEM fail to do so but other integral
equations which do can be given in all cases.

This result raises the interesting and as yet open question as to
whether the poles of the integral equation of SEM in addition to yielding poles
not intrinsic to the body might yield only a subset of the complex poles of the
scattering matrix. No examples where this occurs are yet known but there is no
nroof that it cannot happen. In contrast, if an integral equation using the

Green's function in contrast to the free space Green's function is used, A. G.
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Ramm has recently shown that there is a one-to-one correspondence between the
poles of this Green's function and the zeros of the eigenvalues as they are
used in the Eigenmode Expansion theory. This will be elaborated on in future
work.

2. ‘The relationship between the eigenvalues of the integral equations of
SEM and the complex eigenvalues of the associated partial differential equations
—-- whether scalar or vector. Tn particular, the integral ea-atinng of SFM. have
at most two eigenvalues + and these are functions of the at-most-denumerable
number of complex eigenvalues of the associated differential equations.

3. These results were first presented in an invited address at a special
session on Integral Equations at the annual meeting of the American Mathematical
Society held in Biloxi, Mississippi, January 24-28, 1979. An abstract of this
talk is attached.

Moreover, because of the unfamiliarity of many SEM workers with the
mathematics involved, several attempts were made to write an account suitable
for the IEEE Transactions on Antennas and Propagation. C. E. Baum and others
felt that the first two drafts were too detailed and technical, so that a third
attempt, with many simplifications, was prepared. The resulting vaper, joint
with S. K. Cho of the Radiation Laboratory of the University of Michigan, has
been submitted to the above journal. It is entitled '"On the relationship be-
tween the singularity expansion method and the mathematical theory of scattering”

While a copy of this paper in its submitted form is attached it is

doubtful that the paper will appear exactly as here. Correspondence with C. E.
Baum and one of the referees, Professor Wilson Pierson of the University of
[ v, )
. we Aviliabiiivy Cou
’).',

o8
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Kentucky seem to indicate that certain sfections will still have to be expanded.
Knowledge of this paper's existence seems quite wide spread in view of the num-
ber of requests that have been received for preprints from various SEM workers.
4. As indicat- in the 1979 proposal it was felt that the theory of non-

self-adjoint operators in Hilbert spaceé%ould have significant implications for
that part of the electrical engineering formalism known as the Eigenmode Expan-
sion Method (EEM) particularly in relevance to the use of this formalism in de-
veloping equivalent circuits. X

A survey of the Russian literatura revealed that a significant start
in this direction had been made in both the scalar and vector cases by several
Russian workers. In particular, papers bv A. G. Ramm and M. S. Agranovic in
the scalar case, made it evident a forteriori that the EEM formalism based on
the impedance irtegral equation would not be correct in general and thus the
work on equivalent circuits would have to be critically examined.

In this connection C. L. Dolph, with considerable help from V. Komkov,

reviewed the book: The Generalized Methods of Eigenvibrations in the Theory of

Diffraction byVoitovic, Kacenelenbaum and Sivov, as well as the mathematical

appendix Spectral Properties of Diffraction Problems by Agranovic. An unedited

copy of this review is attached but it is expected that the final version will

appear in the September or October issue of Mathematical Reviews for this year.

Because of its importance two attempts at translation are underway.
A machine translation, arranged by Dr. R. Buchal of AFOSR, and an American Mathe-
matical Society translation, arranged by the author and the editors of Mathema-

tical Reviews.




As the attached abstract indicates, much of the above material was
presented in a talk by C. L. Dolph at the International Symposium on Kecent
Developments in Classical Wave Scattering held at Ohio State University June

25~-27, 1979.

A manuscript by C. L. Dolph, V. Komkov and R. A. Scott entitled "A

Critique of the Singularity Expansion and Eigenmode Expansion Method" will ap-
pear in book form in the conference proceedings to be published by Pergamon Press.
A copy of this manuscript is attached. As this paper contains thec :nalevant Fnelish
translations of the Russian literature, copies of its bibliography were also
distributed (see attached copy). Additional copies of this bibliography will be
furnuished on request.

5. With the aid of Dr. R. Buchal «f AFOSR and Professor F. Gehring and
Lee Zukowski of the Mathematics Department of the University of Michigan and
many others, including the author, A. G. Ramm, formerly of the University of
Leningrad, was successfully brought to the University of Michigan. Since his
arrival on June 5th, 1979, he and the authors have been actively planning and
beginning to implement further research in the areas under discussion. A de-
tailed plan will be available shortly. A list of publications and curriculum

vitae of A. G. Ramm is attached.




Abstract of Talk at American Mathematical Society Meeting

.'//. Biloxi, Mississippi, January 24-27, 1979
L

< C.L. Dolph,University of Michijen,Ann Arbor,Michigan 48104.Fredhol:s
itntegral equatio:s,scatteriny theory, and the singularity oxpansiox
method (SEM].

Since 197t SEM has been extensively used in eleotromagnetic theory e

.iident from the review article by C.k. Baum: Emerging technology for trans
d vroad band analysis and synthesis of antennas and scatterers,™ Proc. I.
{7, 1976, pi.1598-1616. The ¥redholm intsgral equutions and their complex
ngularities used in SiM will be diascussed znd SfM wiil be interpreted in

,72 rns of mathenatical scatterin; theory.




ON THE RELATIONSHIP BETWEEN THE SINGULARITY EXPANSION

METHOD AND THE MATHEMATICAL THEORY OF SCATTERING
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1. Introduction

The singularity expansion method (SEM) and the ﬁathematical
theory of scattering have been extensively developed independently
of each other during the last decade or so. To our knowledge the
relationship between them haé rot been discussaed. In this paper
the implications for SEM of the mathematical scattering theory
will be explored. As a ?esult some important conclusions of SEM
will be seen to also follow from scattering theory and, at the
same time, certain gaps between the two approéches will appear.

The SEM was introduced by C. Baum in 1971 [1] as a technique
for solving transient electromagnetic scattering from bodies of
finite extent. Since then, as reference fo [2), -[3) and [4]
indicate, not only has it been widely used but an extensive

formalism has been developed for it. Succinctly, the SEM is

f—

a generalization of well-known technique of linear circuit theory
in which singularities of a transfer function in the complex
frequency plane are used to determine the transient response
by the Heaviside expansion theorewm. More details of Lhe proc-
cedures of the SEM will be given in Section 2.

Mathematical scattering theory as used here originates in
the work of Lax and Phillips [13, 14, 15] for the scalar case
and its generalization by Schmidt [22, 24] for ﬁhe electromagnetic
case. An independent development of the theory based upon
integral equations similar to those employed in the SEM theory

is due to Shenk and Thoe [25], [26], and [27} in the scalar case

and to Pyz'janov [19], [20]}, and [21] in the clectromagnetic case.




The relevant parts of this theory will be sketched in Section 3
as well as its implications for SEM. In Section 4 additional
aspects of the SEM formalism will be commented upon and some

questions raised as to its interpretation.

2. The SEM Formalism and a Mathematical Interpretation

In view of several descriptions of the SEM given in the
reference already quoted, only a very brief sketch of the
relevant formalism will be given here. The discussion will
further be limited to the electromagnetic case for convex per-
fectly conducting bodies.

Maxwell's equations are firsi subjected to a two-sided
Laplace transformation with respect to the time and the initial
value problem replaced by a time-independent houndary value
problem for a reduced wave eguation for the electric or magnetic
field subject to the corresponding boundary condition for perfect
conductivity and a vector radiation condition. A representation
for the scattered field is then sought in the form of an integral
representation. Application of the boundary condiiion yields
an integral equation (or in some instances an integral-differential
equation) whose kernel is given in terms of some free space
Green's function or dyadic. The unknown in the integral equation
is the response (often a current density on the scatterer) induced
by the incident wave. The so-called natural frequencies
{sn} are the values of s for which the corresponding

homogencous integral eguation has non-trivial solutions. At

e




such a value cf s , the inverse to the integral equation will
not exist and the values of s will be poles of the inverse.

The res' .1ng residue series which leads to coupling coefficients
will not be discussed here. 1In actual practice the homogeneous
integral equation is replaced by a matrix equation by some finite
approximation technigue such as that of the method of moments.
The poles are then sought approximately as the zeros of the
determinant of this matrix.

The formal preccedure, leaving aside the relation between the
solutions of the integral equation and the matrix equation, has
been justified mathematically in only a few cases. The most
complete treatment is due to Marin [17]. For a perfectly
conducting body he used the Franz H-ficld represontation and

treated the resulting magnetic field integral eguation (MFIE)

(@)

for tho 1nducs

current density; namely,

(I-22)-3=J3-2 [, nx (V6 x J)do

It

).

2(2 o Hlnc

Here n 1s theo outward bound unit normal to the scatterer and
G is scalar free space Green function

-s|r-x"]

e _— -—

G = Sl
4w|x~r'|

Solutions; are sought in the Hilbert svace of elements J  that

are tangent to T and square integrable on ©' where T is

assumed sufficiently smooth. ospecifically the inteyral equation




(I - 452)-g = 2(1 + 20)-(n x B "%

is shown to be Fredholm and treated by the method of Carleman.
The operators (I - 2L) and (I + 2L) are shown to have
inverses for the same values of s and consequently these
inverses exist whenever this last integral equation has an inverse.
From this it follows that (I - Zf)wl has a pole at s = S,
whenever the homogeneous integral equation (I - ZE)-i =0
has a non-trivial solution at s = S -

The poles so determined lie in the union of two sets. One
set consists of pnles corresponding to interior resonances. These
arc purely imaginary and their oczcurrence is due to the method.
They dc not contribute to the scatterved field and hence are not
intrinsic to the scattering problem. The other sel consists of
poles corresponding to exterior resonances and they arce not
purcly imacinary. They are in fact eilgenvalues of the vector

wave eqguation

0
I\)‘:’ 3]

VxV xH + -H_ =0
—I -n

o]

for the exterior scattering problem.

The :laim that these poles (exterior resonances) are intrinsic to
the scattering problem will be further substantiated by their

interpretation as poles of the scattering matrix in Section 3.

Marin's conclusion can also be deduced directly from the
analytic Fredholm theorem. In its general form the theorem is
due to Steinbery [28] who established it for a gencral Banach

space.
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Recall that a Banach space B 1is a lirear space in which
a "distance” is defined by a norm, usually denoted by ][[Ib
and it is complete in the sense that every Cauchy sequence
has a limit (in norm) in the space. 1In general there is no

inner product. Let ;iﬂﬂ be the set of bounded operators

on B A norm in iﬁB) can be defined for a linear operator

' A by

| = sup -l2xil
g x€B || x |

An operator A in 5f(B) is called compact {or completely
continuous) if and only if for every bounded seguence {xn}
in B, {Txn} has a convergent subsequencé in B

A family of operators W (s) depending upon s 1is called

an ana’veic family in the neighberhood of Sy if

T(s) = ] T _(s=s)"
0

where corvergence .s in the operator norm and where Tn is in
hgs:y

The theorem can be stated as follows:

If T(s) 1is an analytic family of compact operators for
s € K , an ope~: connected subset cf the complex plane, then
either (I - T(s)) is nowhere invertible in K or ((I - T(s))
is meromorphic in K . At a pole, the equation ¢ - T(so)w = 0

has a non-zecro solution in B .

- 11 -
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If B 1is a separable Hilbert space the inner product caﬁ
be used to express the residue in terms of operators of finite
rank. That is, for each pole there will exist an N and two
sets of linearly independent functions ¢l,...,¢N ’ wl...¢N

such that the corresponding residue can be expressed as

N

¥ (dps---)¥
1 k k

where (£f,g9); has been used for the inner.product. A proof of
this can be found in Reed and Simon [22].

It may be shown directlyr or Marin's argument can be used
to conclude, that the MFIE is a Fredholm integral equation of the
second kind having an integral operator which ig compact. It
is also not difficult to verify that the MFIE yields a family
of operators analytic in s . Marin's conclusion then follows
from the Bilbert space analytic Fredholm theorem.

Howsver, since in most SEM appliéations it is.necessary’to
resort to numerical methods, it is m¢re appropriate to seek
solutions in the space of continuous functions. Such a space here
would consist of the Banach space of all continuous J tangent to
I' when the norm is taken to be

lall, = max 360
xer
The Fredhom operator of the MFIE will still be a compact analytié
family in s and consequently the same conclusions about the

natural frequencies will follow.

- 12 -
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Unlike the papers by Marin other SEM papers are difficult to
interpret mathematically since neither the properties of the

integral equations nor the spaces in which solutions are sought

are specified. Some papers also employ integral equations of the
first kind which, it is claimed, lead to approximate solutions
which are easier to handle numerically. It should, however,
be recognized that integral equations of the first kind cannot,
unless of certain special types like Wiener-Hopf, be used to
establish existence and uniqueness properties. Integral equations
of the first kind, in whatever space their solutions are sought,
are not a well set problem in the sense of Hadamard so that
some method of regularization such as one of the methods of
Tihonov [30] should aeAused. While such methods have been
used in other electromagnetic problems {cf. (8)] they do not
apovear to have occured in connection with SEM. It should also
be emphasized that for scatterers of finite extent, the
Franz E-field representation will not
lead to an integral equation, no matter how smooth the boundary
fields are assumed to be.

In view of this the subsequent interpretation in terms of
scattering theory will be limited to those problems involving

Fredholm equations of the second kind.

3. The scattering operator and scattering matrix.

Several considerations have influenced our decision to

restrict further discussion to scalar rather than vector wave

- 13 -




equations. Not only are all the essential ideas present ‘in this
simpler case but all proofs of the assertions we will make are
readily available. This is, unfortunately, not true in the

other case. For example the theorems about the scattering operator
and the representation of the scattering matrix are stated without
proof by Schmidt [23,24]. \\He indicates that they follow directly
from the corresponding results contained in the book by Lax-Phillips
(13]. And while this is true, we do not expect our readers to have
the necessary familiarity with the Lax~-Phillips theory to find this
easy to do. A reference to Beale's unpublished thesis [5] , where
many of these details are carried out, will soon convince one of

the difficulties involyed. Further, as noted in the reviews of the
pvapers by Pyz'janov [19], [20}, [21], many open questions concerning
the spaces and operators used by this author are also nét specified
and thus these papers are open to the same criticism as most of the
papers in SEM.

Fortunately a straight forward extension of the Shenk-Thoe
theory could be carried out for s # 0 . This would involve
revlacing the representation for the scalar field develoved by
Werner [31] and used by them by Werner's subsequent representation
of scattered electric field as given in [32]. The Shenk-Thoe
procedure could then be followed step-by-step and the con-
clusions reached by Schmidt obtained in this way Jjust as the
conclusions of the Lax-Phillips theory can be reached by the
Shenk-Thoe method in the scalar case.

While Laplace transformations in time have so far been used,

henceforth they will be replaced by an equivalent Fourier transform.

- 14 -
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The time convention used will be that of most papers in physics
and under it, the upper half plane replaces the right-hand half
plane as the domain of analyticity. This is also the convention
used by Shenk-Thoe and its use allows one to state spectral

proverties in the usual form. It amounts to introducing k = is

It is not that of Lax-Phillips and Schmidt where “i" would

be "-i" . Thus outgoing waves here would be incoming-
in their sense and vice-versa.
Let & Dbe an unbounded free space (Q CZEn, n =.2,3)

exterior to a sufficiently smooth convex body with the surface T

The time-dependent acoustic scattering problem seeks the solution

for the wave eqguation for the scattered field S

i 32 s ,— —
(A - ) ——5) uw(r,t) =0, ref , t >0
C t . -

Q

subject tc thae initial conditions

t=0,re€e Q (3.1)
J s ,=— -
st U (r,0) £,(x) .
and one of the following three boundary conditions for
t > 0:
.. . S = _ =
Dirichlet: u (ro,t) = gl(ro’t) '
Neumann: 2 wi(r ,t) = (r r
' any o't = 9 lrget),  Tyer
Robin:

a — -
(gﬁg + a) us(ro,t) = g3(r0,t) .

- 15 -
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where SN n,*V_, n denoting the unit normal vector at
ano 0 0 0 :

the observation point on T directed into @ .

In the scattering theory, one views these problems as

perturbgtions of the free space, or unperturbed problems (with-
out the scattering obstacle) such that, for large time |[t],

the perturbed (or scattered) solutions become asymptotically
equal to the free space solutions. The scattering operators
which are thought to contain all the obserQable information about
the nature of the scatterers represent measures of these- .
perturbations. Let U(t) denote operators which relate the
states at t = 0 to those at t > 0 in the scattering oproblems.
Similarly, let Uo(t) denote the corresponding operators in the
free space problems. If £ = (fl'f2) denotes the init;al data,
then U(t)f solves a scattering problem in the sense that it
represents the state at time t > 0 , evolved from the initial
state. Since the scattered solution is assumed to be asymp-
totically equal in large |t] to the free space solution, one
expects that there exist initigl states, £, + ., in the fre. space
unperturbed problem such that Uo(t) fo + are asymptotically
indistinguishable from U(t)f as t + *+ «. This is made precise

by introducing an appropriate Hilbert space with the energy norm
2 2
lell = f tel? + 1g,0%av

where fl and f2 are compactly supported. For this space,
the operators U(t),Uo(t) are one-parameter groups and unitary.

The asymptotic behaviors stated above are now expressed as

~ 16 -
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Hoe) e - Uy () fo—ll >0, as t » -~ ,

Hute) £ - Ug{t) £+ | >0, as t » 4= .,

Since U(t), Uo(t) are unitary and form a group, the above

expressions may be written as

flu(-t) rue)f - U (t) £411 > 0, as t » &= ;
or
£ - U(—t)UO(t)foiH -0, as t > to
The operators
W, (t) = lim U(—t)UO(t) '
— t-)_-{_-_oo
exist, and are called the wave operators as is well known in
the physics. ¥, (t) , for instance, compares the asymptotic

-+

free spac:

w

solution Uo(t)fo— with the asymptotic scattered

solution U(%) f0+ . See the Figurec 1 below.

fo—
X
Figu 1.
igure 12 .
>
/vq-*-
f0+
The map
+ v
,S : fo— ] f0 (3.2)

- 17 -




Figure 1.
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is called the scattering operator. That such operators 13 exist
and are unitary in the Hilbert space can be established. As

evident from Figure 1,
+ -

Let :} denote the n-dimensional (n = 2,3) Fourier

transformation defined by

) = 2R = 2m2 [ e@ T g% | (3.3)

- 00

The scattering matrix is then defined by

s= 33 37" - (3.4)

Next, consider an exterior homogeneous boundary value

problem

(A+k2> ¢+(?) =0, r€QN,
+ (3.5)

!
(@
Al
m
!

Y19, (T |

Here Yy 1is written for the Dirichlet, Neumann or Robin boundary

condition.

Then,

6, () = KT+ v (F0) Gee

are evidently the solutions of the problem. Although they are

not in L,(Q) , ¢+(?) are improper eigensolutions. 'v+(f,E)

are the solutions of the boundary value problem




(a + k%) v (r,K) =0, T eQ

— (3.7)
- 'ik-ro _ r
Y[Vi (rg/k) + e ] =0 T e I' |,
v, (v_) is called an outgoing (incoming) diffracted plane
wave; ¢+(;) are called distorted plane waves.
If a generalized transformation is defined by
jﬁ _oas -n/2 = YT Ty & ANT . 8)
L(£) = lim (2m) [ £(0) ¢, (xr.K)*ax , (3.
— P> (Y] o~
Y
where 2 = {req9: |r] <p} for some snfficiently large ©

and where * denotes complex conjugate, then the scattering matrix

S takes a sinple forn
S = 25.}_2):1 ’

which is eguivalent to

Tt . the scattering matrix maps ¢_ (r,k) into ¢+(?,E) . This
forr is particularly convenient for time-independent scattering
theory. Since k will be continued to the complex plane, it

is necessary to replace the usual radiation condition by a

representation based on Green's formula. For v+(;,f) this

- 20 -




takes the following form: for outgoing waves associated with

the plus sign and incoming waves associated with the minus sign,

v, &R = [y, &R sor GF(kR) = T (kR) s v, (B',F)1dAT . (3.9)
%l)
i - 2
where Gt(kR) = % % (Egﬁ)(n 2)/2 H(nl2)/2(kR), n= 2,3
R=|T-r'|, Teq , ' €T .

This representation implies that the corresponding integral
of the right-hand side taken over a large sphere tends to zero
as the radius of this sphere tends to infinity. It can be shown

that this in turn is equivalent to the usual radiation conditions

for kX 0 and 0 < arg k <o

For k real, r = |r] , 8=T%/r , w= k/k, k = |k| , and for
lr{ »|r'| on obtains the asymototic form
o L +ikr L
Vi(r,k) = Vi(re,km) = —;T;:TT72 [Si(ﬂ,k,m) + 0(1)] . (3.10)

The functions Sy in this last formula are called radiation
patterns or transmission coefficients. 1In terms of them the

scattering matrix takes the form

_ h(w)s_(~6,k,w)*ds__
lw| =1

w
(3.11)
— n-1 n-1 . .
for h(9) ¢ L2(S ), S being a surface of the unit ball
in n~dimensional space. The above integral operator is

compact for k > 0

- 21 -




This representation may be derived from the scattering operator
[26] or it may be verified by first postulating it and then
invoking some form of the radiation condition and Rellich's
uniqueness theorem, [13, 15].

The representation formulas for outgoing (incoming) waves

v imply that

1+

= 1 =y _ .. B8(X) = =  Fik y-9
st(e,k,w) = #i J [Vi(y,k,w) 5%7 etik ¥

r
_ (3.12)
+ ik v-8 3 - — Lo
- e ' g Ve (vilw)ldo
(2ol
— ik, 2
where B(k) = (+ 5?) . n = 2,3, k> 0.

This relation establishes a one-to-one map between the
analytical properities of s, and of v, . Since it can be
shown that s_(-%,k,u)*=s (-§,k",-B) it follows that if the
solution v, can be constructed and shown to have a meromorphic

continuation from the positive real axis to the entire complex
plane if n 1is odd and to the entire logarithmic Riemann
surface {k # 0 , - < arg k < » if n 1is even , it will follow
that the same is true for the scattering matrix. It also follows
from the Shenk-Thoe theory that the scattering matrix is unitary
for each positive k .

Shenk and Thoe construct the solution for v, for a more

general probiem in which surface T may have several components

and admit, a perhaps empty, decomposition as the union of

Fl and Fz. On Fl Robin boundary conditions are imposed
(a0 = 0 1is allowed) while Dirichlet boundary conditions are
- 22 -
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imposed on Fz . The scattered field is sought, following
Werner [31] , as a superposition of a single layer, a double

layer and a volume potential and the resulting system of Fredholm
integral equations of the second kind is shown to be uniquely
solvable for Im k > 0 in an appropriately constructed Banach
space. Steinberg's theorem is then invoked fgo establish the
analytic properties of tﬁe scattering matrix. This method,

while quite general, would not be useful for numerical computation
becausc of the presence of the volume potential and, to our
knowledge, it has never been employed for this purpose.

In contrast, for the Dirichlet and Neumann problem alternate
represantations using a complex combination of single and double
layer potentials not only can be usced to establish a 1-1 map .
but is more usaful for numerical calculations.

The rezraesenzacions are duc to Brakhage and Werner [7) and

to Leis [16A1 and take the form:
56t (xw) +
CoY Yy = A A0 SO R) ] v)do
v, (r x) [‘[ T FitG (kR y(y)ado (3.13a)
I Y -
_ + 367 (xRr) -
v, (t,k) = [ G (kR) + it oSl p(y)do . (3.13b)
r Y
Here, 1 = 1 for Rcek > 0 and 1 = -1 for Rek < 0 . The

resulting integral equations for a plane wave incidence are

vix) + 2 ﬁﬂ(ggi ¥ it w(§)dgy - _peTikX (3.14a)
Y
and
wixz) - 2 j‘ %%i + it 5%ig;~] w(y)aoy = 2§%~ e—i?-? (3.14h)
) x X X
- 23 -




-17-

These equations have analytic compact integral operators
in the Banach space of continuous functions and possess a unique

solution for Im k > 0 and are meromorphic elsocwhere. They
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therefore also provide a 1l-1 map between the transmission
coefficient, and the solutions to the reduced wave equatioﬁ.
It should be noted, however, that beccause of the higher order
singularity in the Neumann problem it is necessary to use a
methnd of regularization to obtain these resuits. This is
carried out, following the method of Leis {16],/in detail in
Kussmaul [12] where the cylinder problem is txegted numerically.
The corresponding numerical treatment for the cylinder Dirichlet
problem is given by Greenspan and Werner [10].

If SEM were specialized to this case the corresponding

assumptions would be that

_ d + :
v, = fr o= G 8(y)do, (3.15)
Ny
for the Dirichlet problem and
v. = [ ¢ u(y)do (3.16)
+ T Yy :
for the Neumann problem. The corresponding intégral
equation wculd be, respectively ,
3G+ ~-ik-X
§() + 2 [ 5=~ 8(y)do, =-2¢e " (3.17)
r ny Y
— 3+ 3 -ik.¥
]J(X) ~ 2 fr.a_}g G ]J(y)dCSy = 2 I e (3.18)
X

Since as shown in Kupradze [11] these representations do not
provide a unique solution to the corresponding boundary value

problem for the reduceil wave equation, the non-trivial solutions
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at {kn} of the homogeneous equation are not in l—i correspondence
with the poles of scattering matrix. The scattering matrix has

no poles in the upper half-plane including the real axis and

thus does not contain the kn corresponding to interior
resonances. Nor do these occur in the expression for the
scattered field. A direct proof of thic last fact for the
Dirichlet problem can be-found in Dolph [9]. The ¢omp1ex kn'

as may be seen by direct computation, to correspond to outgoing
solutions of the reduced wave equation are complex eigen-

values of the exterior scattering problem and consequently
correspond to noles of the s-matrix. These are method independent
and intrinsic to the scattering body in contrast to the interior
resonances which arise only because of the method.

Because these presentationsfail to furnish a 1-1 mag it is
also conceivznle that there may be other poles of the scatteriné
matrix not given by solutions of the homogeneous integral equations
used in SEY. There are no known examnples in which this occurs,
but the problem must be considered open.

More explicitly the complex poles of the scattering matrix
are in 1-1 correspondence with the solutions of the boundary
value problem

2 = -
(b + kn)wn(r,kn) = 0, r e
(3.19)

Ywn(ro,kn) =0 , ry er .

The complex poles kn' n=1,2,3,...,
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kn=(k0)n—ik;],kr'1>0,
0 > Im (kl) > Im(kz) > Im(k3) > v

lead to the representation of the solution of (3.1) in the

form

. @ ikt
u(r,t) = ) a_e w (¥). (3.20)
nop B n

While the functions wn(f) grow exponentially, in odd dimensiéﬁs
the causality im§lies that solution are zero for time +t < g o

c being the speed of the wave propagation; after this time,

the solution decays in time.

Lax-Phillips [13] proved that, under the Dirichlet boundary
condition for n = 3 , the scattering operator uniquely determines
the scatterer. There are few theorems about the locations of the
complex poles of the scattering except for those located on the
negative imaginary axis (in the SEM, on the negative real axis)
of the complex wave-number plane. Thus, Lax-Phillips showed
that, under Dirichlet, or Neumann boundary condition in 3-dimension,

if o = Im{k) , Re(k) = 0 and if the scatterer contains a sphere

, and is contained in a sphere of radius R, ,

of radius R 9

1
then the number of poles N(g) 1is

R
lim inf ‘L(-‘z’—)— %(Y—i 2,
g-reo o 0

while, if the scatterer is star-shaped,
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Y, = 0.66272 .

J. Beale [6] extended the above results to all n , i.e.,
n = 2,3 , including the case of Robin condition. In particular, for i
he showed that the scattering matrix has at most a finite number
of poles on the purely iﬁaginary (purely real) axis when a
Fourier (Laplace)transformation is used. Furthermore, for n é'2 '
if the boundary condition is either Dirichlet, or Neﬁmann, thén
there are no poles on the axis. The poles on the axis aré, of
course, purely decaying modes. The complex poles of the scattering
matrix which are also the complex eigenvalues of -£ in an
exterior homogeneous boundary value problem for the Helmholtz
egquation are associéted with the physical nsture of the-scattering.
Finally, we will quote an example dues to Shenk-Thoe [27]
to show that the complex poles of the scattering matrix are
precisely those exhibited in the separation of variable solution.

n

g1 , n= 2,3, denote the unit ball in E" . Then,

Let

n—l)

decomnpose L2(S into finite dimensional subspaces H of

L
spherical harmonic of degree & . Each of these spaces is an
eigenspace of the operator S(k), the scattering matrix, and its
eigenvalue 1is
(2)
H +e (ka)

h (l) ] ¢t P
Hp+9, (}\a)

[\

= 2, k>0

.
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where a denotes the radius of sphere, or circle. The
fact that the numerator and the denominator of the eigenvalue
of S(k) above are complex conjugate of each other exhibits

the unitarity of S(k) for k > 0 . The poles of §(k)

are the roots of Héi;(ka) which occur when k is complex .
In particular, for n = 2 , consider an arbitrary continuous
function on the circle of radius a . Expanding it in Fourier

series , one obtains

. (2) .
o ing © H (ka) 1ind
sk)(J ae 9 =-3 o B 0, (3.21)
—~00 n ~x n Hl’(ll) (ka)

where (a,¢0) denotes a point on the circle. If k is
complex ,» S(k) has complex poles in the lower half-plane
of the complex wavenumber plane.

Since the complex singularities determined by integral
equations depend only upon the homogeneous integral equation,

it suffices to consider the simple boundary value problem

(b+x5HuS(@ =0, Tegq. (3.22)
~ikacos?
uS(r.) = -e 70 r. er
0 ' 0 °
and
lim /% —.§’r— - ix)uS(¥) = o0 .
X > )

This has the known separation of variable solution given by
0 Jn(ka)

w(r) = -7 ()"

DN H(l)(kr)ein¢ . (3.23)
— Hn (ka)
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This solution exhibits the same complex singularities as the

scattering matrix. The Brakhage-Werner representation [7]

_, _ ika 21 29 . 1
w®(r) = 22 ]0" (omy — 11) BOY Gmuta,enras . (3.24)

leads to the integral equation:

27

H (a.¢>0) + E%E jo (5—(—%5 - i271) Hél) (kRo)u de! (3.25)
-ika cosd )
= -2 e 0 .

The unique solution of this integral equation is

1 ( )‘ %o
© iy J (ka) e
~c Hn (ka) [Jn(ka) - 1TJn(ka)]

Again the complex singularities are the same as those of
the scattering matrix.

The SEM type of representation for this problem would
be

2T

— i k 9 1 ] v
u ()= ika I woa) 1P R via,eas

and the corresponding integral equation would be

. 27
ika ) (1) Y
via,g,) + =3 fo sxay Ho  (KRg)v d¢

—~ika cos 90
= -2 e

with a solution given by
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2 3 (-1)"7 15 (ka) . ino,

\)(a, ) = e (3.29)
¢0 Tka g Jg(ka)Hél)(ka)

Here, in addition to the complex singularities given by the
scattering matrix, the zeros of Jé(ka) occur at
those values of %k which correspond to the eigenvalues of the

corresponding interior homogeneous Neumann problem. They are an exampl

of the interior resonances of SEM and they do not appear in the

separated solution for the scattered wave. They are clearly

seen to be method dependent.

4. Additional Comments on the SEM

Eigenmode expansions and other spectral properties have been
emploved in the development of the SEM formalism by C. ﬁaum
[2,3,4] and L. Marin and R. Latham [18]. While these have geen
used only formally, even the formal expressions are often meaning-
less. For example, the left and right eigenvalues are defined |

formally by

]

<L(T,T'is) iRy (F'is) > = N)F, (Ers)

i

<L (rjs);I(r,r,'is) > -i(s)fg(?;s)

where T (r,r';s) ,/represents some intecral operator involving

a free space dydadic kernel. Then, the integral equation
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KI(Z,T'is): T(X'is)p= 1(r;s)

has a formal solution given by

Since neither properties of the integral equation nor
the space in which its solutions are sought are specified,
it is difficult to comment on the validity of this pfocedure..
If the space were a Hilbert space of square integrable functions
and the integral eguation were of the first kind with a

hermitian symmetric Hilbert-Schmidt kernel then
undexr a strong convergence condition it is wvalid. (Cf.e.g.,
the discussiocn in Tricomi [29]).

An 2lternate and more Dromising,interpretation'would be
in terms of non-self adjoint Pperétors'as they are, for example,
discussed in Ramm [21.1] . This inferpretation, however,
requires a knowledge of dissipative operators and root spaces
and consequently will nof be further commented upon here.

It appears that much of the doubtful SEM formalism arises
vhenever a formal liwic 0f a nutrix relation is taken. While
all matrices have eigenvalues and associated invariant spaces,
this is not true of their limit, integral operators, and, even
1f the int;gral operator does have a eigenvalues there may not

. be enough to span the range of the operator. As a case in

poirt, the homogeneous MFIE has only one eigenvalue, namely "-1"

- 32 -
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but this value can arise for many different values of k-those
corresponding to both interior and exterior resonances. While
these k's corresponding to exterior resonanaces are eigenvalues

of the exterior scattering problem for the vector wave equation,

they are not eigenvalues of the MFIE.

Since there is a rapidly developing theory of equivalent
circuits based on the SEM formalism, this formalism should be
carefully evaluated‘and only that part of it for which é.mathe-
matical basis can be furnished should be used. We hope to return

to this subject in the future.
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REVIEW

Unedited draft - The general method of eigenvibrations

/
in the theory of diffraction.{by N. Voitovic, B. Kacenelenbaum,A.Sivov

Spectral prop. of diffractions problems (by M.S. Agranovicls
MAUK Moscow, 1977.

The problems of diffraction and scattering of electro-
magnetic or ccoustic waves have been treated at different levels

of physical evidence or intuition and of mathematical rigor. 1In

sore engineering publications "the analysis"” consisted of little
more than formal manipulation without much worry about the

spaces in which the operators act, about completeness or con-
vergence. At the other end of the scale sophisticated mathematical
theories have been developed which so far failed to permeate to

the level of physical applications. The monograph under review

is a splendid example of the intermediate "interdisciplinary
approach, attempting to open up the communication between the
mathematicians and practical engineers working on problems of
communicaticn theor% In the opinion of the reviewer
their approach appears to be the most promising way of overcoming
the vocabulary and traditional formalistic differences in approach
to the subject. The first part outlines some eigenvalue-eigen-
function problems of electromagnetic theory, particularly the
£-technique which has been pioneered by Voitovié, Kacenelenbaum,

and Sivov The "generalized metinod" consists of representing the
solutions in terms of eigenfunctions of a homogeneous problem in
which the eigenvalue is not the frequency (or a root of the fre-
quency) but some other parameter of the system, such as for example,
the dielectric constant of a reference system occupying the same

volume. It is not necessary for each term of the series to
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satisfy the boundary conditions (as is the usual practice in
applying the Rayleigh-Ritz or Galerkin procedures). Only the
whole series satisfies the imposed boundary conditions. Part two
considers the significance of the boundary conditions. The
conditions of impedence type (the w techniques), the adjoint
boundary conditions (the p-techniques), conditions given at
infinity, the metallic surface conditions are some of the topics
discussed. Chapter 3 covers the variational techniques. Using

the e-approach they considered the system

Considering ¢ as a (fixed) constant, the authors look for the

stationary behavior of the following functional

)
: S(Vu)’dV
K= L4 —y+ -
SU’dV-}-zSu’dV (v=v*tv-),
v- v+
u=u, 4 pop,
K () =K (1) + O (3.
- 40 -




or of

L(u) [ (Vu)2<ﬂ/— k2 J_ u2 dav - kzs f+ u2 dv.

v v v
Alternately setting L(u) = 0. They consider the funccional

E(u) of the e-technique

S(Vu)" dV — 11 S utdv
v -
E(u)= v .
A S u?dV
vt

Variants of these techniques are applied to a variety of problems
in Chapter 4. Metallic tuning devices, wave guides constitute

typical examples of applications. A separate chapter,

_§pectral ﬁ}operties of ﬁiffraction'groblems (123 pages plus biblio-
éraphy), written by Agranovfg is modestly called an appendix. It
fully deserves a separate review. It contains the introductory
definitions concerning non-selfadjoint operators in Hilbert spaces,
basis and biorthogonal systems, Sobolev spaces, and elliptic
operators. He discusses some properties of elliptic pseudodiffer-
ential operators and of elliptic boundary value problems. This
preliminary discussion leads to theorems concerning the ellipticity
of the boundary value problems in diffraction theory, and the order
of the corresponding operators and of their selfadjointness.
Problems in diffraction theory are reduced to the study of spectral
properties of certain pseudodifferential operators theorems on
disipative property of such operators are proved. The author's

s-technique is rigorously restated. Invertibility (which was

- 41 -




-4-

required in certain steps of Chapter 2 is proved as a theorem.
Some properties of the s-technique are closely related to the
general techniques initiated by M.G. Krein. The appendix does
not discuss the details of the variational approach of the
authors. Further research is needed to resolve many outstanding

issues raised by the authors approach to diffraction theory.
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A CRITIQUE OF THE SINGULARITY
EXPANSION AND EIGENMODE EXPANSION METHODS

C. L. Dolph, V. Komkov and R. A. Scott
University of Michigan, Ann Arbor, Michigan 48109

SUMMARY

The authors outline some available theoretical techniques
interpreting the complex singularities of the S matrices, and
po.nt out various difficulties which so far have prevented a
formulation of a consistent and vigorous theory. Some directions
for future research are suggested. These are primarily concerned
with the singularity expansion and the eigenmode expansion methods.
In particular, some recent results of the Russian school pertaining

to the theory of non-self-adjoint operators are summarized.
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: A CRITIQUE OF THE SINGULARITY: EXPANSION AND EIGENMODE EXPANSION METHODS
: l
C L. Dolph, V. Komkov and R. A Scott
University of chhlgan, Ann Arbor, Michigan 48109
: ! ;

INTRODUCTION S 3

]
!

The role of complex singularities in scattering problems is a rich and diverse one
[see Dolph and Scott (1)]. Baum (2) has been of the prime movers in the Unitcd
States of the subjects of the title. He has been helped in his efforts by the work
of Marin (3) and Tesche (4). In the Soviet Union their counterparts are Voitovil, !
Kacenelenbaum and Sivov (5). There appears, however, to be an important .difference
between the two courtries in that in the USSR mathemat1c1ans beginning with A. G.
Ramn, carefully examined the formalism of the approaches. Such efforts have
‘culminated in a book with an 1nterdlsC1p11nary spirit entitled: The Generalized
Methods of Eigen Vibrations in the Theory of Diffraction (5). The book, which also .
contains an extensive appendix by AgranoviC entitled: Spectral Properties of §
Diffraction Problems, has been reviewed by the first author (with considerablc help
from the second author) This review should appear shortly in Mathematical Reviews.
and an effort is underway to have the text itself translated into English. It is ;
fortunate that much of the pertinent Soviet work has appeared in English translatio
in the Journal of Radio Engineering and Electron Physics. The readers attention
should be called to the two papers of Ramm [(6), (7)] and the series of papers by
Agranovic [(8), (9), (10)]. All of this work was stimulated by the pioneering pape
of Kacenelenbaum (11) and its sequel by Voltovil, Kacenelenbaum and Sivov (17). ;
There also is an important paper by Agranovil and Golubeva {13). [A word of (?utlox
must be injected here. In a relevant paper of Golubeva (14), the word vproposition’
is translated as "conjecture," which one must admit does change the flavor. Since ;
each "conjecture'" is followed by a full proof the reader must be alert to the
-transl tion problems.]

f e e e e b0

‘/

i
; SINGULARITY EXPANSION METHOD('SEM) /

/
/
The Slngularlty Expan51on Method and its relatlonshlp to the mathematical theory o

. scattering has recently been analyzed by Dolph and Cho (15) and consequently no
exhaustive detail on the technique is required here. Instead, a summary of the
results of that work will be given.

, i
7 !
i }
' |
t
£

The Singularity Expansion Method is a generalization of well-known techniques of
linear circuit theory in which the singularities of a transfer function are used
to determine the transient response by the Heaviside expansion theorem. In electro
magnetic theory, the singularities are found by first applying a two- s1ded Laplace '
transform, parameter s, to the Maxwell equations and then constructing an integral
equatlon for the scattered field. Complex singularities {sp} appear as poles of
the inverse of this equation and are determined from the non-trivial solutions of
the corrcsponding homogencous integral quatlon

The scattering operator is a unitary operator on a Hilbert space. _Its laplace
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-transform the scatterlng matrlx is analytlc in the rlght hand s- plane 1nc1ud1ng
the axis and is meromorphic in the left-half plane. It has poles in the left- half
plane at those values of s for which there exist non-trivial outgoing solutions of .
the reduced Maxwell's equations satisfying the boundary conditions. These dJscrete
values of s are complex eigenvalues of the exterior scattering problemf Shenk and ;
Thoe (16) have established a one-to-one correspondence between the poles of the -

" S-matrix and the poles of the integral equaticm. |

)
Some of these poles occur on sheets of Riemann surfaces and serious diéficultics
arise in interpreting their meaning. This fact can be deduced from the study of :
the integral equation. Only the Green's Kernel can be continued analytically into'!
such "forbidden domaians™. she x&solvenc can nct. }

; . ) t
While it is difficult to relate these conéepts in general since most of the woxrk in
SEM involves a formalism in which neither'spaces nor properties of the.integral =~ |
equation are given, this can be done for the papers of Marin (3). He uses a Hilbert
space consisting of tangential currents on the surface of a convex body to discuss!
the magnetic field 1ntegra1 equation. He deduces a Fredholm integral equation of
the second kind from this and uses Carlenan s Fredholm theory for the determination
of the natural modes. The solution of the corresponding homogeneous integral
equation contains both exterior and interior resonances, the latter being purcly
imaginary. :

P .

e ——— "y -

To relate the scattering matrix to the integral equation one makes use of its
representation as a compact Fredholm integral operator. The kernel of this opera-
tor is a transmission coefficient arising from the asymptotic form of the scattered.
field. Since its determination involves the solution of the scattering problem, .
rather than use the above representation, it is simpler to use the one-to-one
correspondence between the kernel of this representation and the solution of the
vector wave equation. It can be given in terms of a vector integral equation which
is more general than the magnetic field integral equation. Fredholm theory is now
used. Recall that if A is a compact operator (such s the above mentioned operator
defining the integral equatlon) then the first part of the Fredholm alternative '
states that A¢ = f has a unique solution ¢ if A¢ = 0 has only the trivial solution.
Hexre the first part of the Fredholm alternative yiclds a unlque solution to the’
general equation for the right-hand s-plane including the 1mag3nary axis. 7The
analytic Fredholm theorem for compact operators which is given, for example, in
Reed and Simon (17), then implies the analytic and meromorphic properties of the
scattering matrix discussed above. ; N
/

|
For the magnetic field integral equation,:one must use the second part, of the Fred-
holm alternative, namely: If A$ = 0 has non-trivial solutions then:

) ’

i
§
i

l mmmernntts i onae

|
(i) As = 0, A*y = 0, where A* is the adjoint of A, have the’ ‘same finite
number of solutions. i ’ t

. . . ,
(ii) For A$ = f to have a solution ¢f, f must be orthogonal to all of the

solutions of A*y = 0. | X i

o amemcarm e

Since the solution to A$ = 0 can be added to ¢., then clearly the procéss is not
unique and no one-to-one map between the scattéring matrix and the integral cquatio.
exists for the same half-plane. The non-trivial solutions of the corresponding
homogeneous integral equatlon occurring for complex {s, } do, however, correspond to
polcs of the scattering matrix but the interior resonances correspondlng to purely
imaginary {s_} are not poles of the scattering matrix nor do they appear in the
solution for the scattered field. They are consequently method dependent. The
exterior resonance corresponding to complex {q } are method independent and intrin-
sic to the scattering body.
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Slncc a one to-one c01respondencc falls to ex1sg it 1s concc1vab1c that ‘there ai;_j
complex poles of the scattering matrix which are not given by the solutions of the .
homogeneous magnetic integral equation corresponding to complex {sn} No examplcs
however, in which this occurs are known and thus the problem remains open. i

Since it is generally believed that the scatterlng matrix contains all observable
information about the scattering process,.the above observations substantiate the
~laim that the complex singularities are intrinsic to the scatterer whereas those
which are purely imaginary are not. i

. e s~

Further difficulty arises in that most problems treated by the SEM formalism in-
vole /numerlcal techniques applied to matrix equations obtained from finite approx-
‘imations tou iue integial equations. Hence Hilcer: space svlutions are not really!
'approprlate. Fortunately, the results can be given in terms of solutions in the

Banach space of continuous functions. In this space the Fredholm. theorem as given
by Steinberg (18) can be used to discuss the magnetic field integral equation and
to establish the one-to-one map between the scattering matrix and the associated

set of vector integral equations. This map between the scattering matrix and the
integral equation has been carried out for convex, perfectly conducting bodies only
[see Lax and Phillips (19), Brakkage and Werner (20), and Dolph and Cho (15)]. J
Certain other aspects of the SEM formalism have also been investigated by Dolph and
Cho (15) and serious doubts were raised regarding those, parts of it vhere integral.
equations of the first kind are used. Also, there appears to be a confusion in the
SEM literature between the eigenvalues of the integral equations and those of the .
vector wave equatlons and a belief persists that what is true for the finite matrix
equations holds in the limit. u ‘

=t

Though said elsewhere, it seems worth repeating that areas in wvhich the forréllsm
needs further investigation include:

PO

I. The construction of variational principles useful for providing estimates for :
the location of the poles in the SEM and possibly of use in establishing their !
existence for off-axis poles not covered by the known Lax-Phillips results (21) for
the scalar case and their generalization by Beale (22) for the elcctromaonetlc case.

/
II. An investigation of integral equations of the first kind as used in SEM and a
p0551b1c justification of their use throuoh regularization methods, such as those
of Tihonov (23) : ' ’

i s

cametmmame i st

s

I11. The extension to the electromagnetic case of theorems sufficient to guarantee
that all poles are simple. This should include generalizations of the theorems of
Steinberg (18) and Howland (24). .

’

IV, An 1nvest1gat10n of the entire functions which arise, through the’Mittag-
Leffler thcorem,| in the formalism. This should include the determination of con-
ditions under which they do not occur and their explicit form when they do occur.
V. The crecation of a systematic theory of the asymptotic contribution of branch
lines. As can be seen from the discussion in Dolph-Scott (1), such a theory could
have implications in many areas. :
At this point a few remarks on the T-matrix would seem to be in order. The T~matri
formalism for scattering has proved to be an efficient way of obtaining numerical
results in a number of complicated problems [sce Bolomey and Wirgin (25)]. It was
used by Watcrman (26) in 1969 and subsequent publications include papers by
Peterson and Strom[(27), (28), (29)], Strdm [(30), (31), (32)] and Varatharajulu
and Pao (33). However there is a rclatiunship between thc T and S matrices, namely
T =358 -1, as stated in Wu and Ohmura (34), and physicists in thc past have used

S in prefercnce to T.

-
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EIGENMODE EXPANSION METHOD ! » 1
! ! .
Baum (2) has advanced the idca of synthesizing transient responses by means of the
cigenmodes of integral equations of the first kind describing the system response. ;
Considerable caution must be exercised in this approach however, since as Ramm [(6)
(7)) has pointed out, incorrect results can sometimes arise due to the ron-self-
adjoint property of the operators that are treated. At this point it appears -
certain that the theory of non-self-adjoint operato.s can be used to contribute
substantially to the understanding and limitation of the torm~lism of EEM ( and = '
SEM). While the idea of using non-self-adjoint operator theory in _cattering ‘
problems is not new---it was already suggested by Dolph (35) in 1960--it dues not :
appear to have been used in connection with SEM and EEM in the English‘literature.
This is rather surprising since this theorv has been 1mploy9d in connecdtion with
scalar diffraction problems in papers translated from the Russian and reprlnted in
the Journal Radio Engineering and Electron Physics beginning after the formallsm '
presented in the paper by Voitovi&, Kacenelenbaum and Sovov (12).
! )
¥hile this latter paper contained a formalism similar to EEM for both the scalar
and electromagnatic case, including dielectric problems, its subsequent interpretat
at least in translated papers known te the wiiters, in terms of non-self-adjoint
operator theory have been limited to the scalar problem. In the simplest casc one'
attempts to construct a formal solution to the system !

e e

e s e e —— e

}
t :

2 . :

(A + kXJu = £ : (-

. i

u =0, on a smooth convex scatterer T, 5

- ——

satisfying the radiation condition as a series u = ug + TALe (x). Mere ud is the
incident fiecld ard {on(x}} are the eigenfunctions of a compact 1ntegral operator

A, which for in three dimensions, is glven explicitly by i '

Ay, = 160(551)¢n(z)dc = A (K¢ (x), : gg):

r T ' j s

vhere the free space Green's function Gy is ! o g
{ ’ H

) ' {

gRAIES i

e v o arwe

% % Tl - “

! " 'l

It was further assumed that the coeff1C1ents in the ahove expans1on could be detern

by the Fouricr coefficient formula | s {
/ t i
! . t
Ir(u—uo) ¢nd0 ) ,I/ . A i
An = -———2——-——-—— . . ' (4)
Jézas :
r, ) '

Ramm (7 ) interpreted and clarified these results by using a Hilbert space L (1)
with the usual Hermitian inner product

(f,g) = ]f(i)ﬁ(;) do , (%)
r
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Since GO is real symmetrlc but complex valued this implies that

. . i
(Ao, 0) = ($,A0) : (€)

-— —_—— e e e e e e a

so that the operator A is non-self-adjoint. t

s ¢ .

[ SR }

-Since the compact operator A is non-self- ad301nt it may have root vectors instead
of simple elgenvpctors That is for a given 1, therc may exist an integer p > 1 :
such that (A-aAD)P ¢ = 0 for some ¢, while (A A1) ¢ # 0 for all q < p. (In the matrix
case this happens when non-simple elementary divisors occur and requires the use of
+ha Tawdan narmal form rather than the dlagonal form in the canonical representatior
of the matrix.) However, Ramm was able to show that while the system of root vector
was always complete in LZ(F), the simple form of the coefficients given above \ould
only occur if the snrfacé I' were such that A defined over it was a normal operator,
that is AA* = A*A (this condition is necessary and sufficient for A to be a diagonal
operator).! The normality nf the operator can be tested as follows: For example, ‘!

consider the operator A: H-H, where X

_ 1 ex (ik{s-v{) ! i
AR 4WJJrs’i1—ift>dt : @)

r - . H

P T

.—

A is normal provided the integral

R

t
| sin(k|x-t] |y-t]) - :
[ e |
r \
vanishes, a condition that Ramm was able to show was truc if T is a sphere In
compllcaLed problems it may have to be tested by direct computation.
1f the operator A is not normal, considerable complexity arises in the fheory and
computational schemes. The problem is that in general one hus to work 'in an in-
finite dimensional analog of the Jordan normal form, since A fails 'to be dia-
gonalizable. ~The lemma of Schur [see Gohberg and Kreln (36)] }states that any
completely continous operator A mapping a Hilbert H space onto itself can be Tepre-
sented in a triangular form. Spec1f1ca11y, there exists an orthogonal ‘basis w, of:

H such that

e e Vemvitee L

/

———a

!
!
A
Aw. = ¥ a..w.

N o . J1a VAR
. i g e ),
‘ - . . : _ _ 4 ' '
vhere a.. = (Aw.,w.) = A, (3) !denoting inner product and X, being an eigenvalue
of A. ) J J J ) 1 J , i ;

. i !
There are many arcas which need detailed mathematical investigation. For ecxample
VoYtovi¢, Kacenelenbaum and Sivov consider several variational principles which
produce stationary solutions. These are reminisicent of thosc of Schwinger and
McFarlanc, the latter occuring in the problem of anomalous propagation throu 'h

the atmosphere. Attempts to make mathematical sense of thesc occur in Dolph (373,
Dolph and Ritt (38) and Dolph, Mclaughlin and Marx (39). The max-min characterizat
of the last paper unfortunately depends upon the dimension of the approximating
space and so it badly nceds reformulation. The only other pertinent work it scems
to be that of Morawetz (40) where as discussed in Dolph-Scott (1) a variational
principle is given implicitly.
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In connection with variational principles the following facts should be mcntloned'
The var1at10na1 approach given in (5) has been bricfly reviewed by Doiph in (41).°

VoYtovi&, Kacenelenbaum and Sivov introduced the e- approach by considering an )
approx;mate scattering problem (the e- problem) and the corresponding systems of !
equations (

.,l !
\ M + X eu % 0 inV ;
1
Au+ Ku =0 inV ;
I
+ - {
u -u Ié = 0 . l
.e . l
i . ’
I = 0] !
u S : )
- i .
. !
ou Ju ]
" ofg : (10)
€ I
leading to a miminization of the functional :
f
2. s :
L(w) = J (vw) Zav- - kZJ wPav - k% qudv o an’
v ) v- R V+ . ‘. '

A rigorous justification of such techniques still remains an open probiem. Similar
variational prirciples were given by J. Schwinger and H. Levine (42). .|Also see !
Kaio (43), and Dolph (37)]. As in the case discussed by Dolph and Ritt (38), or
Dolph (37), it ccon be conjectured that the real and imaginary parts of the unknoun:
function mear the staticnary point lie on a saddle-like surface, but the orientation
of such a saddle is unknown. ' : !
: 4

~
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ZEROS OF THE INWNPUT IMPEDANCE FUNCTION FOR THTN
CYLINDRICAL AND PROLATE SPHEROIDAL ANTENNAS
C. T. TAI
1. Introduction

The input impedance function of the thin cylindrical antenna
has been studied by Hallen [1], Schelkunoff [2], King-Middleton [3],
Tai [4] and others. Although the methods used by these authors are
different from each other, yet they yield the numerical results for
the input impedance in the (real-valued) frequency domain which
agree relatively closely not only with each other but also with ex-
perimental results.

The main objective of our study is to numerically compute the
distribution patterns of zeros of the input impedance functions in
the complex frequency domain of thin cylindrical and prolate spher-
oidal antennas, and study their implications. This is carried out
by the use of Schelkunoff's perturbation method [2] with a slight
modification. The Schelkunoff's method is essentially a heuristic
one and so is our present study because we adopt the method formally
without establishing a rigorous mathematical justification.

In section 2 the input impedance functions are derived for a
cylindrical antenna and a prolate spheroidal antenna and, in section
3, the numerical results are presented for zeros of these functions
in the complex frequency plane. In section 4 we offer a concluding

rémark on our numerical results.

2. Input Impedance

In this section we derive the input impedance functions for thin
cylindrical and prolate spheroidal antennas based on the Schelkunoff's
method. For convenience of the reader, we will show the essence of
the method in some details for the cylindrical case; for the prolate
spheroidal case, we will merely show the result since the same procedure

is used.

2.1 Cylindrical antenna
Consider a cylinder of lengtn 22 and radius a. By regarding it
as a nonuniform transmission line with the source located at the

center of the cylinder, we define the line impedance, line admittance,
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and characteristic impedance at r, 0 < r < ¢, as following:

n
o o 2r
Z(r) = jk e ln(—a )
Y(r) = jkn/n_ 2n(3E)
o a '’
and n
_ o 2r
K(r) = — ln(g—J
where no = 1207 ohms and k = w/udgo.

We then define the average characteristic impedance of the non-

uniform line as

n L
_ o1l 2r
K, = — 7 .[ tn (7= a)dr, (1)
(o)
where o is some positive real constant number yet to be determined.

Carrying out the integral, we get

"o 29

a

™|+

where B = e/u. If we set B = e, (2) reduces to the average charact-

eristic impedance defined by Schelkunoff:

=

v o) 22
K ] = 2 gan(sh,
O B_:e m ae

which can be written in terms of the bicone parameter 80 = a/2 (5],

the half-angle of the bicone, as

3

K°]8=e = zn(gg).
This shows that the average characteristic impedance of the cylinder
corresponds to the characteristic impedance of a bicone whose half-
angle is eeo = 2.7 60. On the physical ground, it seems more appro-
priate to have the bicone inscribed in cylinder. It is for this
reason that we introduced a new averaging procedure in the form of

(1). If B =1 is chosen, (2) becomes
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ald:

- . - K =

2 _
° Ln (e“;) = zc(eo) (3)

zc(eo) being the characteristic impedance of a biconical antenna
with the half-angle GO = a/k.

The average line impedance, Z,s can also be defined similarly.
Thus

n g
y = 4k 2 1L (2E
Z24 = jk T 1 .[ Rn(a o)dr
(e}
= ijO. (4{

Following Schelkuncoff, we set

_ 2
Yo = ZO/Ko (5)
and
kK =VvZ Y .
oo
Note that Yo is not the average zdmittance in the sence of (4). We
now denote the measure of nonuniformity of the line by
2(r) = 2(x) - 2o (6)
0 <r < 3
g(x) = ¥(r) - ¥_. (7)
Then, we can write
A . o r
z(r) = 3j — Rn(I), 0 <r < 2. (8)

This "perturbation" of line impedance is awkward because it tends
to - j» as r » 0. This is a consequence of the definition of the
line impedance as given previously, and is one of the mathematical
difficulties in the Schelkunoff's method. We then assume that the
nonuniform line varies in such a way that the following restriction
holds throughout the line:

<

Qr) _ _ o (9)
2

2(r) o
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This condition is necessary for linearization of the theory.
By the nonuniform transmission line theory, the line voltage

and current at r, 0 <« r < &, are given by

r -
Vir) - v (r) - & f 2 (t) [3V(t)sink (r-t)
(e} o]
+KOI(t) cosk (r-t)}dt (10)
and
I(r) = I (r) + l——-.lmé(t)[jx I(t)sink(r-t)
o K 2 5 (o]
o
+V (t) cosk (r-t)]ldt, (11)
where
Vo(r) = Vocoskr - jKOIOEinkr, (12)
Vo
Io(r) = Iocoskr -3 f; sinkr, (13)
IO = I (o), Vo = V(o).

Vo(r) and Io(r) denote, respectively, the line voltage and current
of a uniform transmission line. Egs. (10) and (ll) are coupled
Volterra integral equations of the second kind for I(r) and V(r).

Since such Volterra integral equations in L2 possess unique solutions
and the operators are contractive, one can apply Piccard's iteration

to obtain a convergent solution. Thus, we formally write the solutions

of (10) and (1l1) as

v(r) (14)

<
o
H

I(r)

5
K NEE:
o
=t
H

o

(15)

o]
o]

For n = 0, Vo(r) and Io(r) are given by (12) and (13); for n 2 1,

r
v, () = - %— ~f 2(t) 13 v _;(t)sink(r-t)
o "o .
+ KoIn—l(t) cos k (r-t)ldt, (16)

I

r
1 . .
In(r) ;~§- ~£ 2(t) [JKOIn_l(t)51nk(r—t)
o

+ Vv __y (t)cosk(r-t)ldt (17)
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Unfortunately, it becomes impractical to compute the iterates be-
yond the first and this is a major difficulty of this theory. We

are then forced to accept the "approximate" solutions as

Vir) = Vo(r) + Vl(r), (18)
I(r) =2 I (x) + I;(r). (19)
Following Schelkunorff, we set the terminal impedance at r = % as
V (k&) + v, (k)
7 (ke) = L{k8) o o L . (20)

I(ke) Io(kﬁ) + I. (k)

1
We note that Vl(kl) and Il(kﬁ) in (20) are the first iterated solu-~
tions of the Fredholm integral equations with r replaced by & in (10)
and (l11). As such, unlike the Volterra integral equations, we no
longer have a priori assurance of the uniqueness of the solutions,

nor of the convergence of the iterated solutions. Even if we assume
that the iterated solutions of the forms (18) and (19' =2re acceptable
approximate solutions for k > 0, (i.e., for the real-valued frequen-
cies), it is possible that such an assumpticn may not be valid when
analytically continued in the complex freguency plane as we must even-
tually do for the cormputation of zeros of the input impedance function.
In spite 2f these unsettled mathematical questions, we formally pro-

ceed and postulate

K02
- I )
Z (kL) 2 (k2) ' (21)
a
where
Z (k) = K _2v(ke). (22)
a (o)
Y(k2) [5] represents the terminal admittance of a biconical antenna

with which our cylindrical antenna is associated. The configuration

of the biconical antenna depends on the choice of the value of B.

Evidently, the postulations (21) =~ (22) are heuvristic. Equating
(20) and (21), we can find the i * impedance function of the cyl-
indrical antenna at r = 2. This 1. the Schelkunoff's theory of the

cylindrical antenna. Actually, Schelkunoff approximat:d (20) as
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Vo(kl) + Vl(kl)

Z (k) Io(kl)

At this point, we depart from the Schelkunoff's theory and

. define a complex variable s by
s = jk& (23)
and formally replace k& in (20) and (21) by - js. After some lengthy

manipulation, we obtain the desired complex-valued input impedance

of the cylindrical antenna in s domain and write

F _(s)
(c) .\ _ c
2in'®) = X g _taT 24
where
@C(S) = f(s)
1 s . -3
Ry Ty, [e® E(2s) + e "E(-2s)]
- %éél (e®E(2s) - e SE(-2s)], (25)
)
GC(S) = g (s)
J_ N
- ATRS { 4¢nBsinh(s)

—[eSE(2s) - e_SE(—Zs)]}

_y(s) :
55 {4Qn8cosh s)

-[e®E(2s) + e—sE(—2s)]},(26)

f(s) =5 11+ y(s)11L + 91725, (27)
S —
gs) = - [1 + y(s)1(1 - [(s)=7%%], (30)
1
Y(8) = 35 (4n(2) - [e?S - o~ 28
+ (2 + e25)E(29)
+ P—ZSE(—ZS)
- ¢35 (15) , (31)
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ts 1 - e2u
E(iS) = -—d—_— du (32)
(o]

2zn(§—) . (33)
(@]

and

ko)
il

The input impecdance of the biconical antenna of the half-angle 60

is given by (cf[5))

(b) - f(s)
Zin (s) = Zc(eo) g(s)
-2s -
= ZC(S ) 1 + T(s)e e (34)
1 -T(s) e

The extent ¢of the validity of the input impedance function (24)

can be tested by the inicial- and final-value theorems. Our aralysis
shows that, with the applied unit step voltage, the final-value
theorem is satisfied but not the 1initial -value theorem. In fact,

we get

sKOI(s) > -1,
which 1is clearly absurd. This finding cast some serious doubt apout

the numerical values of the zeros of the input impedance function.*

2.2 Prolate spheroidal antenna

We now consider a thin prolate spheroidal antenna inscribed in
the cylinder described in section 2.1. By the same procedure, we can
obtain the formal express.ion for the input impedance function in s.

The result 1is

F _(3)
. (8) _ s
din (8} = K, c_s) . (35)
~there Dl(s) o(s) .
Fgls) =F_(s) + 57—>me v p JE; (s) (36)

*The approxlmate impedanc~ function given by eq. (8) by Hallen [1]
also fails to meet the initial-~value theorem.
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_g-
G (s) = G_(s) - ;E}(zins SRAL WO (37)
Dl(s) = - sinh(s)sinh(2s)-2n(2)

- 2 cosh(s) [e*®E(2s) + e *®E(-2s)]

+ % [e35E (4s) + e 3Sg(-4s)], (38)
jEl(s) = - cosh(s)sinh(2s)+2n{(2)

- % sinh(s) [e®%E(25) + e *SE(-29))

+ 3 [e”%Es) ~ e 3B (-40)]. (39)

3. Numerical results

We have numerically computed zeros of the complex-valued input

impedance functions (24) and (35) in the s-plane with 8 = 1 for
a/%2 = 0.01 and 0.1, respectively and the results are shown in Figs.
1 and 2. 1In Fig. 1, we also show corresponding zeros of the bicon-

ical antenna for a direct comparison. As seen from this graph, the
zeros of the input impedance function for the cylindrical antenna are
only slightly displaced from thcse for the inscribed biconical antenna.
For the purpose of attempting to understand the implications of the
numerical results of our present study, we also include in the graph
complex~valued poles of the axial current density function on the cyl-
inder of the dimension a/f% = 0.01. The data shown in Fig. 1 are ob-
tained by Tesche [6] by means of the singularity expansion method or
the integral equation method; Fig. 1-1 shows the distribution pattern
of these complex poles. The SEM complex poles correspond to complex-
valued zeros of the input impedance function. We see from Fig. 1 that
the distripution pattern of our results ard that of the SEM are en-
tirely different. 1In particular, the zeros of the input impedance based
on the Schelkunoff's theory are located only on two "layers", whereas
the Tesche's poles occur in multi-layers of similar trajectory. It
shoulid be emphasized, however, that the nature of our present problem
and that of the SEM are different: our cylinder is a center-fed trans-

micting antenna, whereas the cylinder in the SEM analysis is a scatter-
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ing body. Therefore, there is no basis to expect two sets of data
to have similar variations.

In Fig. 2, we present zeros of the input impedance function of
the prolate spheroidal antenna of the dimension a/f% = 0.1 and the
corresponding SEM results obtained by Marin{[7]; the distribution pat-
tern of the latter is shown in Fig. 2-1. The zeros of the input
impedance function of our prolate spheroidal antenna occur again
only on two layers, but the layers now cross each other. Such a
crossing of two layers also occur in the case of a biconical antenna
when the half angle 80 is relatively large. Again our numerical

results and those of the SEM are widely different.

1. Conclusion

The objective of our present study was to shed some light on
the transient behaviors of thin cylindrical and prolate spheroidal
antennas by the use of the classical pole-zero method of the transfer
function. Unfortunately, however, we do not feel that we can draw
definite conclusions about the implication of the numerical results
for the zeros of the input impedances of the antennas, mainly because
we are not certain, as discussed in sec%tion 2.1, whether or not the
formal extension of Schelkunoff's theory to the complex fregquency
domain is meaningful, even though Schelkunoff's theory is generally
believed to yield the input impedance function of a thin antenna
structure in the sense that the numeral results agree reasonably
well with experimental ones in the real frequency domain. Finally,
we remark that two similar sets of zeros of the input impedance func-
tion in the complex frequency domain such as those for the cylindrical
and biconical antennas in Fig. 1 do not necessarily imply that the
impedance functions in the real frequency domain are close to each
other. For example, the maxima and the minima of the real and imag-
inary parts of the input impedance of the biconical antenna and those
of the cylindrical antenna in Fig. 1 are approximately 2 to 1 in ratio.
Conversely, two input impedance functions which agree arbitrarily closel
with each other in the real frequency domain may have quite different

sets of zeros in the complex frequency domain.
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